Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38528735

RESUMEN

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Asunto(s)
Contaminantes Ambientales , Polímeros de Fluorocarbono , Fluorocarburos , Contaminantes Químicos del Agua , Éter , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos , Éteres , Alcanosulfonatos , Éteres de Etila , Digestión , Estrés Oxidativo
2.
Chemosphere ; 352: 141312, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311043

RESUMEN

Algal blooms worldwide pose many challenges to drinking water production. Pre-oxidation with NaClO, KMnO4, or ozone is commonly used to enhance algal removal in conventional drinking water treatment processes. However, these currently utilized oxidation methods often result in significant algal cell lysis or impede the operation of the subsequent units. Higher algal removal with pre-chlorination in algal solutions prepared with natural water, compared to those prepared with ultrapure water, has been observed. In the present studies, preliminary findings indicate that ammonium in natural water alters chlorine species to NH2Cl, leading to improved treatment efficiency. NH2Cl with 1.5-3.0 mg∙L-1 as Cl2 with an oxidation time of 3-7 h significantly enhancing algal removal by coagulation. The selective oxidation of surface-absorbed organic matter (S-AOM) by NH2Cl, followed by the subsequent peeling off of this material from the algal surface, leading to an increase in zeta potential from -20.2 mV to -3.8 mV, constitutes the primary mechanism of enhanced algal removal through coagulation. These peeled S-AOM retained their large molecular weight and acted as polymer aids. Compared with NaClO and KMnO4, NH2Cl displays the best performance in improving algal removal, avoiding cell lysis, and decreasing the potential for nitrogenous disinfection byproducts formation under the reaction conditions used in this study. Notably, in major Chinese cities, water purification plants commonly rely on suburban lakes or reservoirs as water sources, necessitating the transportation of raw water over long distances for times up to several hours. These conditions favor the implementation of NH2Cl pre-oxidation. The collective results indicate the potential of NH2Cl oxidation as a viable pretreatment strategy for algal contamination during water treatment processes.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Desinfección , Cloro , Halogenación , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
3.
J Hazard Mater ; 459: 132173, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37531765

RESUMEN

Bisulfite-activated permanganate (S(IV)/Mn(VII)) process has proven to be a promising method for rapidly degrading micropollutants. Previous studies have shown that the treatment efficiency of the S(IV)/Mn(VII) process suffer from significant water matrix effects while the mechanism still remains unclear. This study systematically investigates the influence of chloride, which is a common water constituent, on the S(IV)/Mn(VII) process. Addition of chloride decreased the removal of methyl phenyl sulfoxide, phenol, benzoic acid and carbamazepine by the S(IV)/Mn(VII) process but increased dimethoxybenzene removal. The distribution of reactive species in the S(IV)/Mn(VII) process in the absence and presence of chloride was determined with relative rate method. The S(IV)/Mn(VII) process primarily relies on SO4•- and reactive manganese species (RMnS) for pollutant abatement while dosing chloride decreased the concentration of these reactive species. Reactive chlorine species (RCS), such as Cl2•- and ClO•, are formed through the reaction of SO4•- with chloride, and become more important at high concentrations of chloride. RMnS includes Mn(VI), Mn(V) and Mn(III), but none of these species are capable of oxidizing chloride. However, chloride retarded the consumption of bisulfite which reduced RMnS and RCS in turn. DOM inhibited pollutant removal by the S(IV)/Mn(VII) process while the impact mechanism was significantly altered by chloride. Additionally, the study observed a synergistic inhibition of DOM and chloride on the degradation of pollutants that are highly reactive towards Cl2•- and ClO•.

4.
Environ Sci Technol ; 57(47): 18991-18999, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243626

RESUMEN

This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 µg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromuros , Bromo , Bromatos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Oxidación-Reducción
5.
Chemosphere ; 321: 138094, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758814

RESUMEN

Permanganate (MnO4-), an oxidant that has been applied in water treatment, has highly varied reactivity toward pollutants. In this study, we found manganate (MnO42-) could destruct diverse functional groups, with oxidation rates being higher than that of permanganate under acidic and neutral conditions. Mechanistic study revealed manganate rapidly disproportionated to permanganate and colloidal MnO2 in solution. Under acidic conditions, the in-situ formed colloidal MnO2 possess higher reactivity than permanganate and primarily contributed to the degradation of pollutants. The reactivity of in-situ formed colloidal MnO2 is highly sensitive to pH and decreased dramatically with increasing pH. Consequently, the contribution of MnO2 to pollutant removal decreased with elevating pH, which also leads to the decreased degradation efficiency of micropollutants at high pH. Manganate is an intermediate produced during the manufacturing process of permanganate. This study indicates that manganate might be an alternative of permanganate for water purification under acidic and neutral conditions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Óxidos , Compuestos de Manganeso , Oxidación-Reducción , Oxidantes , Permanganato de Potasio
6.
Environ Sci Technol ; 56(18): 13131-13141, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067445

RESUMEN

The poor oxidation capacity of the Fe(II)/S2O82- [Fe(II)/PDS] system at pH > 3.0 has limited its wide application in water treatment. To unravel the underlying mechanism, this study systematically evaluated the possible influencing factors over the pH range of 1.0-8.0 and developed a mathematical model to quantify these effects. Results showed that ∼82% of the generated Fe(IV) could be used for pollutant degradation at pH 1.0, whereas negligible Fe(IV) contribution was observed at pH 7.5. This dramatic decline of Fe(IV) contribution with increasing pH dominantly accounted for the pH-dependent performance of the Fe(II)/PDS process. Unexpectedly, Fe(II) could consume ∼80% of the generated SO4•- non-productively under both acidic and near-neutral conditions, while the larger formation of Fe(III) precipitates at high pH inhibited the SO4•- contribution mildly. Moreover, the strong Fe(II) scavenging effect was difficult to be compensated for by slowing down the Fe(II) dosing rate. The competition of dissolved oxygen with PDS for Fe(II) was insignificant at pH ≤ 7.5, where the second-order rate constants for reactions of Fe(II) with oxygen were much lower than or comparable to that between Fe(II) and PDS. These findings could advance our understanding of the chemistry and application of the Fe(II)/PDS process.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Compuestos Férricos , Compuestos Ferrosos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno , Contaminantes Químicos del Agua/análisis
7.
Water Environ Res ; 93(11): 2374-2390, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34250667

RESUMEN

Since the observation that carbon materials can facilitate electron transfer between reactants, there is growing literature on the abiotic reductive removal of organic contaminants catalyzed by them. Most of the interest in these processes arises from the participation of carbon materials in the natural transformation of contaminants and the possibility of developing new strategies for environmental treatment and remediation. The combinations of various carbon materials and reductants have been investigated for the reduction of nitro-organic compounds, halogenated organics, and azo dyes. The reduction rates of a certain compound in carbon-reductant systems vary with the surface properties of carbon materials, although there are controversial conclusions on the properties governing the catalytic performance. This review scrutinizes the contributions of quinone moieties, electron conductivity, and other carbon properties to the activity of carbon materials. It also discusses the contaminant-dependent reduction pathways, that is, electron transfer through conductive carbon and intermediates formed during the reaction, along with possibly additional activation of contaminant molecules by carbon. Moreover, modification strategies to improve the catalytic activity for reduction are summarized. Future research needs are proposed to advance the understanding of reaction mechanisms and improve the practical utility of carbon material for water treatment. PRACTITIONER POINTS: Reduction rates of contaminants in carbon-reductant systems and modification strategies for carbon materials are summarized. Mechanisms for the catalytic activity of carbon materials are discussed. Research needs for new insights into carbon-catalyzed reduction are proposed.


Asunto(s)
Carbono , Purificación del Agua , Compuestos Azo , Catálisis , Transporte de Electrón , Oxidación-Reducción
8.
Water Res ; 188: 116481, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039830

RESUMEN

Although permanganate activation by sodium sulfite (Mn(VII)/Na2SO3) has shown great potential for rapid abatement of organic contaminants, the limited reactivity under alkaline conditions and undesirable Mn residual may prevent its widespread application. To solve these challenges, calcium sulfite (CaSO3) was employed as a slow-release source of SO32-/HSO3- (S(IV)) to activate Mn(VII) in this study. It was found that the application of CaSO3 solid could extend the effective working pH range of Mn(VII)/S(IV) from ≤7.0 to ≤9.0. Moreover, due to the enhanced precipitation of MnO2 with the presence of Ca2+, very low Mn residual (<0.05 mg/L) was achieved in Mn(VII)/CaSO3 system. Mn(VII)/CaSO3 system is a unique two-stage oxidation process in terms of reaction kinetics and reactive oxidants. Specifically, Mn(VII) was rapidly consumed and reactive Mn intermediates (e.g., Mn(VI), Mn(V)), SO4•-, and HO• were produced in the first stage. However, the second stage was governed by the interaction between MnO2 and S(IV), with SO4•- and HO• serving as the dominant reactive oxidants. Taking advantage of an automatic titrator, excess S(IV) was found to greatly quench the generated radicals, whereas it did not cause a significant consumption of reactive Mn species. All these results improved our understanding of the Mn(VII)/S(IV) process and could thus facilitate its application.


Asunto(s)
Compuestos de Manganeso , Óxidos , Cinética , Oxidantes , Oxidación-Reducción
9.
Water Environ Res ; 92(4): 604-611, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31602733

RESUMEN

Activating permanganate with reductants has gained increasing attention recently for efficient organic contaminants abatement via reactive intermediate Mn species. However, few studies have been conducted to explore the role of pyrophosphate (PP), a typical complexing agent for intermediate Mn species, in activated permanganate systems. In this study, taking sulfamethoxazole (SMX) as a probe compound, the influences of PP on SMX degradation by permanganate/thiosulfate and permanganate/hydroxylamine were extensively studied. It was found that both thiosulfate and hydroxylamine were able to activate permanganate for oxidation of SMX in the absence of PP. However, upon the introduction of PP, opposite effects were observed in the two systems where PP further improved the activation of permanganate by thiosulfate but dampened the performance of permanganate/hydroxylamine markedly. For permanganate/hydroxylamine system, MnO2 was determined to be the only reactive oxidative species accounting for SMX degradation in the absence of PP, and its generation could be completely inhibited by PP. While in permanganate/thiosulfate system, both Mn(V) and MnO2 were responsible for SMX oxidation, and the introduction of PP could strengthen the oxidative ability of Mn(V). These results could shed some insights on the suitability of applying PP to explore the kinetics and mechanisms of manganese involved redox reactions. PRACTITIONER POINTS: Both Na2 S2 O3 and NH2 OH·HCl can activate KMnO4 for SMX removal without PP. MnO2 is the reactive oxidative species involved in KMnO4 /NH2 OH·HCl system. Mn(V) and MnO2 account for the SMX oxidation by KMnO4 /Na2 S2 O3 system. PP could inhibit the formation of MnO2 but enhance the oxidative ability of Mn(V).


Asunto(s)
Compuestos de Manganeso , Óxidos , Difosfatos , Oxidación-Reducción , Sustancias Reductoras , Sulfametoxazol
10.
J Hazard Mater ; 388: 121735, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31812477

RESUMEN

Bisulfite-activated permanganate (PM/BS) process has shown extremely great potential for the rapid degradation of organic contaminants while the active oxidants involved in this process have been under disputation. In this work, the active oxidants in PM/BS process were re-identified and the contributions of different active oxidants to the degradation of various organic contaminants were investigated with a competition kinetics method. Many lines of evidence indicated that both radical species, including hydroxyl radical (HO) and sulfate radical (SO4-), and reactive manganese species (RMnS), including Mn(VI), Mn(V), and possible Mn(III), contribute to the degradation of contaminants in PM/BS process. SO4- contributed much more than HO to the degradation of all contaminants of interest except nitrobenzene in PM/BS process. RMnS were very selective and showed high reactivity to phenolic and sulfoxide compounds as well as carbamazepine. With the increase of initial pH and the [bisulfite]/[permanganate] molar ratio, a mechanistic changeover from RMnS to radicals occurred during phenol degradation in PM/BS process. The generation of RMnS and radical species, especially SO4-, could be well explained by the proposed mechanism consisting of radical chain reactions and manganese reduction reactions via both electron transfer and oxygen transfer steps.

11.
Water Res ; 157: 435-444, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30978665

RESUMEN

Taking advantage of the active oxidants generated in the process of Mn(II)-catalyzed sulfite oxidation by oxygen, this study sought to enhance Mn(II) removal from water by activating oxygen with sulfite. The results revealed that Mn(II) can be effectively oxidized by oxygen to MnO2 with the addition of sulfite under environmentally relevant conditions, and the performance of this process is dependent on the dosage of sulfite and the initial pH. Mn K-edge XANES analysis indicates that Mn(II) removal is primarily due to the transformation of Mn(II) to MnO2 and, secondarily, to the adsorption of Mn(II) on generated MnO2. Co-existing NaCl and CaCl2 negatively affect Mn(II) removal, while the presence of Fe(II) considerably enhances Mn(II) removal by improving both Mn(II) oxidation and Mn(II) adsorption on the generated solids. Consequently, Mn(II) removal is as high as 98% in the presence of 1.0 mg/L of Fe(II) and both the residual Mn (<0.1 mg/L Mn) and Fe (<0.3 mg/L Fe) can meet China's drinking water standard. The experiments with real water samples also demonstrate the effectiveness of the sulfite-promoted Mn(II) removal process, especially in the presence of Fe(II). The enhancing effect of sulfite on Mn(II) oxidation by oxygen is mainly associated with the generation of HSO5-, and the critical step for generating HSO5- is the rapid oxidation of SO3•- by oxygen. EPR and radical scavenging studies demonstrate that SO4•- radical is the key reactive oxygen species responsible for Mn(II) oxidation by HSO5-.


Asunto(s)
Compuestos de Manganeso , Oxígeno , China , Oxidación-Reducción , Óxidos , Sulfitos
12.
Environ Sci Technol ; 50(3): 1473-82, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26709670

RESUMEN

Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.


Asunto(s)
Compuestos de Manganeso/química , Manganeso/química , Óxidos/química , Sulfitos/química , Contaminantes Químicos del Agua/química , Compuestos de Anilina/química , Compuestos de Bencidrilo/química , Cinética , Oxidación-Reducción , Fenoles/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...